
  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

MAY 2013 
2. REPORT TYPE 

CONFERENCE PAPER (Post Print)  
3. DATES COVERED (From - To) 

DEC 2010 – NOV 2012 
4. TITLE AND SUBTITLE 
 
FAST STATISTICAL MODEL OF TIO2 THIN-FILM MEMRISTOR AND 
DESIGN IMPLICATION 

5a. CONTRACT NUMBER 
FA8750-11-2-0046 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62788F 

6. AUTHOR(S) 
 
Miao Hu, Hai Li, and Robinson Pino 

5d. PROJECT NUMBER 
T2NC 

5e. TASK NUMBER 
PO 

5f. WORK UNIT NUMBER 
LY 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
Polytechnic Institute of NYU 
2 MetroTech Center 
Brooklyn, NY 11201 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 
                 N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

Air Force Research Laboratory/Information Directorate 
Rome Research Site/RITB 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S) 

                AFRL/RI 
11. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 
AFRL-RI-RS-TP-2013-016 

12. DISTRIBUTION AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.  PA Case Number:  88ABW-2011-6302 
DATE CLEARED: 5 DEC 2011 
13. SUPPLEMENTARY NOTES 
© 2011 IEEE. Proceedings International Conference on Computer Aided Design (ICCAD), San Jose, California. 7-
10 November 2011.  This work is copyrighted. One or more of the authors is a U.S. Government employee working 
within the scope of their Government job; therefore, the U.S. Government is joint owner of the work and has the right to 
copy, distribute, and use the work. All other rights are reserved by the copyright owner. 
14. ABSTRACT 
The emerging memristor devices have recently received increased attention since HP Lab reported the first TiO2- based 
memristive structure. As it is at nano-scale geometry size, the uniformity of memristor device is difficult to control due to 
the process variations in the fabrication process. The incurred design concerns in a memristor-based computing system, 
e.g, neuromorphic computing, can be very severe because the analog states of memristors are heavily utilized. 
Therefore, the understanding and quantitative characterization of the impact of process variations on the electrical 
properties of memristors become crucial for the corresponding VLSI designs. In this work, we examined the theoretical 
model of TiO2 thin-film memristors and studied the relationships between the electrical parameters and the process 
variations of the devices. A statistical model based on a process-variation aware memristor device structure is extracted 
accordingly. Simulations show that our proposed model is 3 ∼ 4 magnitude faster than the existing Monte-Carlo 
simulation method, with only ∼ 2% accuracy degradation. A variable gain amplifier (VGA) is used as the case study to 
demonstrate the applications of our model in memristor-based circuit designs. 
15. SUBJECT TERMS 
TiO2, thin-film, memristor, model 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
 

UU 

18. NUMBER 
OF PAGES 
 

 

19a. NAME OF RESPONSIBLE PERSON 
NATHAN MCDONALD 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A 

           Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

9



Fast Statistical Model of TiO2 Thin-Film Memristor
and Design Implication

Miao Hu
Dept. of ECE

Polytechnic Institute of NYU

Brooklyn, NY, USA

Email: mhu01@students.poly.edu

Hai Li
Dept. of ECE

Polytechnic Institute of NYU

Brooklyn, NY, USA

Email: hli@poly.edu

Robinson E. Pino
Air Force Research Laboratory

Advanced Computing

Rome, NY, USA

Email: robinson.pino@rl.af.mil

Abstract—The emerging memristor devices have recently re-
ceived increased attention since HP Lab reported the first TiO2-
based memristive structure. As it is at nano-scale geometry size,
the uniformity of memristor device is difficult to control due
to the process variations in the fabrication process. The in-
curred design concerns in a memristor-based computing system,
e.g, neuromorphic computing, can be very severe because the
analog states of memristors are heavily utilized. Therefore, the
understanding and quantitative characterization of the impact
of process variations on the electrical properties of memristors
become crucial for the corresponding VLSI designs. In this work,
we examined the theoretical model of TiO2 thin-film memristors
and studied the relationships between the electrical parameters
and the process variations of the devices. A statistical model
based on a process-variation aware memristor device structure
is extracted accordingly. Simulations show that our proposed
model is 3 ∼ 4 magnitude faster than the existing Monte-
Carlo simulation method, with only ∼ 2% accuracy degradation.
A variable gain amplifier (VGA) is used as the case study to
demonstrate the applications of our model in memristor-based
circuit designs.

I. INTRODUCTION

Based on the completeness of circuit theory, Prof. Chua

predicted the existence of the fourth fundamental passive

circuit element – memristor in 1971 [1]. Till 2008, a real

memristor device was implemented through a TiO2 thin-film

structure [2]. Since then, many different types of memristor

materials and devices have been reported or rediscovered.

Memristors show many promising characteristics as the

next-generation data storage devices, such as non-volatility,

low-power consumption, high integration density and excellent

scalability [3][4]. Also, the special property that remembers
historical profile of the electrical excitations on the device [5]

makes memristor an ideal candidate to realize the synapse

behavior in electronic neural networks [6][7].

As process technology scales down to 45nm and below, pro-

cess variations, e.g., line-edge roughness (LER), oxide thick-

ness fluctuation (OTF), and random discrete doping (RDD) [8],

lead to significant device parameter fluctuations. The impact of

process variations on a memristive system may be more severe

than a conventional digital design because of the utilization

of the analog states of memristors. Many models have been

carried out for various memristor devices, including TiO2 thin-

film memristors [9], spintronic memristors [10], and ion con-

ductor chalcogenide-based memristors [11]. Very recently, Hu

et al. presented a geometry-variation aware memristor device

structure model [12]. The associated Monte-Carlo simulation

flow, however, is very time-consuming.

In this work, we developed a fast statistical model to

simulate the electrical properties of TiO2 thin-film memris-

tors. Starting with the theoretical model of a TiO2 thin-film

memristor, we explored the influences of geometry variations

on the electrical parameters of the device. On top of that, a

statistical model with the merits of both high accuracy and

low runtime cost is proposed. Compared to the existing work

in [12], our model significantly improves the runtime cost by

3 ∼ 4 orders of magnitude; and reduces the input data set

down to a few variables. The simulation accuracy maintains

within ∼ 2% discrepancy in the whole working region of the

memristor device, compared to the results using the model

in [12]. Furthermore, we demonstrated a design example – an

op-amp based variable gain amplifier (VGA), and analyzed the

impact of process variations to the design with the extracted

statistical model.

The rest of paper is organized as follows: Section II in-

troduces the memristor basics, including the theory and the

physical mechanisms of TiO2 thin-film memristors, and ana-

lyzes the impact of process variations on the device electrical

properties; Section III illustrates the theoretical fundamentals

of our proposed model; Section IV explains the methodology

to generate our proposed statistical model; Section V demon-

strates the effectiveness and accuracy of our proposed model

by some examples; and Section VI concludes our work.

II. BACKGROUND

A. Memristor Theory

The original definition of the memristor is derived from the

completeness of circuit theory: besides resistor, capacitor and

inductor, there exists the fourth basic two-terminal element that

uniquely defines the relationship between the magnetic flux

(ϕ) and the electric charge (q) passing through the device,

or dϕ = M · dq [1]. Since ϕ =
∫
V dt and q =

∫
Idt, the

definition of the memristor can be generalized as:{
V = M(ω, I) · I

dω
dt = f(ω, I)

, (1)
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Fig. 1. TiO2 thin-film memristor. (a) structure, and (b) equivalent circuit.

where ω is a state variable; M(ω, I) denotes the instantaneous

memristance, which may vary over time. Under certain condi-

tions, M(ω, I) and f(ω, I) may be simplified as the explicit

functions of I .

B. TiO2 Memristor

In 2008, HP Lab demonstrated the memristive effect by

moving the doping front along a TiO2 thin-film [2]. Fig.

1(a) illustrates the Pt/TiO2/Pt structure. The stoichiometric

TiO2 with exactly 2:1 ratio of oxygen to titanium has a low

conductivity and can be considered as an insulator. When

the TiO2 loses a certain amount of oxygen (called oxygen-

deficient titanium dioxide), its conductivity becomes relatively

high as a semiconductor. A positive bias causes the oxygen

vacancies to drift to the pure TiO2 region and lowers the

overall resistance continuously. A negative bias, however,

reverses the above process and raises the overall resistance

[3].

Fig. 1(b) illustrates the equivalent circuit of such a TiO2

thin-film memristor as two resistors connected in series. RL

(RH ) denotes the lowest (highest) resistance of the device

when the memristor is fully doped or undoped, respectively.

The total memristance of a TiO2 memristor can be expressed

as

M(α) = RL · α+RH · (1− α). (2)

Here α (0 ≤ α ≤ 1) is the relative doping front position, which

is the ratio of doping front position over the total thickness of

the TiO2 thin-film.

The velocity of doping front movement v(t), which is driven

by the voltage applied across the memristor V (t) can be

expressed as

v(t) = dα
dt = μv · RL

h2 · V (t)
M(α) , (3)

where μv is the equivalent mobility of dopants; h is the thick-

ness of the TiO2 thin film; and M(α) is the total memristance

when the relative doping front position is α. The change of α
over time t can be obtained by solving the differential equation

Eq. (3) as

α(t) =
RH−

√
R2

H
−2·(RH−RL)·(A+B)

RH−RL
. (4)

Here A = μv · RL

h2 ·∫ t

t0
V (t)dt exhibits the memristor’s historic

behavior; and B = RH ·α0+
1
2 ·(RL−RH) ·α2

0 is determined

by the initial condition α0 = α(t0).

C. Process-Variation Aware Monte-Carlo Simulations

The process variations significantly influence the electrical

properties of nano-devices. For a TiO2 thin-film memristor,

there are three major sources of process variations: (1) Line

edge roughness (LER), which is generated in the lithography

and etching steps and causes the deviation of the printed

image’s edge from its designed pattern; (2) Oxide thickness

fluctuation (OTF), which is generated in the deposition pro-

cess; and (3) Random discrete doping (RDD), which leads

to the material non-uniformity within the device. In the rest

of paper, without loss of generality, we use ω and ω′ to

respectively represent the design value and the actual value

under process variations for any given variable ω.

Very recently, a Monte-Carlo simulation method was pro-

posed to analyze the impact of geometry variations on the

electrical properties of TiO2 thin-film memristors [12]. A 3D

device structure including the geometry variation information

is generated by performing a sanity check of the device

characterization parameters. In the Monte-Carlo simulations,

the memristor device is divided into many small filaments

sandwiched between two electrodes. Within a filament i, the

cross-section area s′i = l′i · z′i and thickness h′
i, can be

considered as constants, whose value can be modeled by

taking into account the effects of LER or OTF, respectively.

The corresponding memristance and doping front position of

filament i can be represented as

M ′
i(α) = R′

L,i · α′
i +R′

H,i · (1− α′
i), (5)

and

α′
i(t) =

R′
H,i−

√
R′2

H,i
−2·(R′

H,i
−R′

L,i
)·(A′

i
+B′

i
)

R′
H,i

−R′
L,i

, (6)

where the coefficients A′
i = μv · R′

L,i

h′2
i

· ∫ t

t0
V (t) · dt and B′

i =

R′
H,i · α0 +

1
2 (R

′
L,i −R′

H,i) · α2
0.

The two boundary resistances of filament i: R′
L,i and R′

H,i,

which can be calculated by

R′
L,i =

∫ h′
i

0
ρon

s′
i
(α′

i
) · dα′

i, (7)

and

R′
H,i =

∫ h′
i

0
ρoff

s′
i
(α′

i
) · dα′

i. (8)

vary from filament to filament under the process variations.

Here ρon and ρoff are the electrical resistivity of the doped

and updoped TiO2 thin-film, respectively, which suffer from

the RDD issue.

The overall instantaneous memristance of the TiO2 memris-

tor can be calculated as the total resistance of all n filaments

connected in parallel as

M ′(t) = 1
Σn

i=1
1/M ′

i
. (9)

Due to the thin film thickness fluctuation (and/or the rough-

ness of the electrode contact), the doping front movement

inside every filament varies. Therefore, a concept named

“average doping front position” is introduced as

α′(t) = R′
H−M ′(t)
R′

H
−R′

L
. (10)
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In the Monte-Carlo simulation flow proposed in [12], a fil-

ament based process variation model is carried out. However,

due to its large runtime cost, this technique is infeasible in

large scale circuit and system designs. In this work, we will

proposed a more efficient process-variation aware memristor

model with a very slight accuracy relaxation.

III. AN ANALYSIS OF MEMRISTOR MODEL

Compared to other fundamental passive devices, the model-

ing of memristors has some unique challenges: First, as a time-

varying device whose properties are determined by the historic

profile of electrical excitations, not only the variations of the

start and the end states, but also that of the intermediate time-

varying state must be modeled; Second, as an analog device

that can be used in diverse circuit styles and environments,

various device properties, e.g., the total memristance and its

changing rate, the timing and frequency responses, and I-V

characteristic, must be modeled; finally, the calibration and

validation of the proposed models can be challenging due to

the lack of published measurement data.

When the device variations are within the reasonable range,

we can assume the ratio between the actual device parameter

and its designed value as a polynomial expression, or x′ =
η ·x. Here η is a coefficient representing the effects of process

variations. Our goal is to find an efficient methodology to

compute the variation-aware coefficient η.

The total memristance M ′, which is a time-varying pa-

rameter, can be uniquely defined by R′
H , R′

L, and α′(t). In

this section, we will examine the variations of R′
H , R′

L, and

α′(t) first, and then derive the corresponding process-variation

aware memristance model. Table I summarizes the designed

values of the TiO2 memristor geometry dimensions and its

electrical parameters adopted in our work [2].

A. Distribution of R′
H and R′

L

For a given TiO2 memristor, we use R′
H and R′

L to denote

its actual highest and lowest total memristances, respectively.

As Eq. (7) and (8), the geometry variations (h′
i and s′i) influ-

ence both R′
H,i and R′

L,i simultaneously within the filament

i. It indicates R′
H,i and R′

L,i are correlated. However, they are

not fully correlated because of the randomness in ρoff and

ρon, which is incurred by RDD. We define γ = ρoff/ρon to

describe the RDD effect, which can be modeled by a normal

distribution as γ′ = μγ · (1+σγ ·D). Here μγ = RH/RL and

D ∼ N (0, 1). The actual value of σγ will be determined by the

particular device structure, material and fabrication process. In

our following simulations, we assume σγ = 2%.

To obtain the distributions of R′
H and R′

L, we conducted

Monte-Carlo simulations with 10,000 3D device samples. The

variation samples are generated by the same algorithm and

TABLE I
THE IDEAL PARAMETERS OF A TIO2 THIN-FILM MEMRISTOR.

Geometry Dimensions Electrical Parameters

Length (l) 50 nm RH 16,000 Ω
Width (w) 50 nm RL 100 Ω

Thickness (h) 50 nm μv 10−14 m2S−1V −1

Fig. 2. The Distribution of R′
L from 10,000 Monte-Carlo simulations and

the fitting curve of Eq. (11).

constraints in [12]. Our results show that the distributions of

both R′
H and R′

L are close to normal distributions and can be

approximated by

R′
L = RL · (μRL

+ σRL
· E), (11)

and

R′
H = RH · (μRH

+ σRH
· E) · (1 + σγ ·D). (12)

Here, two independent random numbers E ∼ N (0, 1) and

D ∼ N (0, 1) are introduced. E represents the correlation

between R′
H and R′

L due to the same geometry variation

sources. D represents the impact of RDD, which affects the

ratio between ρoff and ρon.

Fig. 2 compares the approximated normal distribution

shown in Eq. (11) and the actual distribution of R′
L from

Monte-Carlo simulations. The root mean square error (RMSE)

incurred by the normal distribution approximation is only

4.4%. A quantile-quantile plot is also shown in the inset of

the figure.

B. Distribution of α′

As shown in Eq. (10), the calculation of the average doping

front α′ requires time-consuming filament-based simulations.

If we can somehow extract the actual α′ directly from the

designed value α by using a simplified process variation

model, the simulation cost can be improved.

Considering the fact that RH � RL in a TiO2 memristor,

a simple approximation of Eq. (4) can be:

α(t) = 1−√
1−X, (13)

where,

X =
2μv

γ · h2
· (
∫ t

t0

V (t) · dt+ α0 − 1

2
· α2

0). (14)

Eq. (14) shows that the variation of α can be directly

linked to the variation of X , which has three independent

contributors: (1) the variation of thin-film thickness h, (2) the

impact of RDD that is represented by γ, and (3) the magnetic

flux of the input signal ϕ =
∫
V dt. Interestingly, LER does

not impact α′, as also proved by the simulations in [12].

Impact of flux ϕ and boundary conditions.
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If there are no process variations, the average doping front α
will be uniquely determined by the magnetic flux ϕ, as shown

in Eq. (14). However, when process variations are considered,

the historical profile of the electrical excitations (instead of

only the absolute value of ϕ) will introduce the additional

variations of ϕ by interacting with the device variations such

as thin film thickness h′ and RDD γ′.
To understand how the historical profiles of ϕ, e.g., the am-

plitude and the time duration etc., affect the variation of α, we

conducted the Monte-Carlo simulations with 10,000 3D device

samples and traced the doping front the position α′(t) in every

device samples. A sinusoid input signal V = Vap ·sin (2πf · t)
with a fixed frequency f = 0.5Hz is applied. The +3σ and

−3σ variations of α(t = 1s), which has been normalized

against the designed value of α(t = 1s) when varying Vap

from 0.1V to 1.2V , are shown as the curves labeled with

“3D, +3sigma” and “3D, -3sigma” in Fig. 3, respectively. Here

ϕ(t = 1s) = Vap/(πf), which is proportional to Vap.

The simulation results show that the 3σ variance of α′ is

approximately proportional to ϕ, except when α′ is close to 1

(or the total memristance is close to R′
L). A significant over-

shoot of the +3σ variance at Vap = 1.1V is observed. Based

on the mathematic expression in Eq. (13–14), it indicates that

α has a wider distribution when X is approaching 1.

A closer look of this boundary situation is shown in Fig.

4. It records the movement history of the doping fronts of

100 device samples when Vap = 1.1V . The RED curve is

the designed behavior while the 100 BLUE curves come from

Monte-Carlo simulations. The average doping fronts of some

devices with large process variations hit the device boundary

during the movements and cause the large variance of α′ at the

+3σ corner. However, large α′ variance at the −3σ corner not

observed in Fig. 3. It is because the average doping front of

the most devices at the −3σ corner will not reach the device

boundary under the simulated electrical excitations.

TABLE II
STATISTICAL MODEL OF TIO2 THIN-FILM MEMRISTOR.

Variation Parameters: μRH
, σRH

, μRL
, σRL

, σγ

Coefficients: w1, w2, ε1, ε2
Independent Random Numbers:

D ∼ N (0, 1), E ∼ N (0, 1), G ∼ N (0, 1).
Memristance boundary:

R′
H = RH · (μRH

+ σRH
· E) · (1 + σγ · D)

R′
L = RL · (μRL

+ σRL
) · E

Input flux:

ϕeff =

{ ∫ t

t0
Vap · dt (α′ < 1)

h2(RH + RL)/(2μvRL) (α′ ≥ 1)

Doping front position:
α′ = η · α
η = 1

(1+ϕ·ε1+ϕ·ε2·(w1·E+w2·G))·(1+σγ ·D)

Memristance:
M ′(α) = R′

L · α′ + R′
H · (1 − α′)

Further increasing the flux ϕ, i.e., increasing Vap from 1.1V
to 1.2V makes the variance of α′ drop, as also shown in Fig.

3. Under this scenario, the amplitude of ϕ is so large that

the average doping front of the most simulated devices have

reached the device boundary. These devices have a constant

α′ = 1 and therefore, will not contribute to the variances

of average doping fronts. A new concept named “effective

flux,” which includes the constraints of device boundary, can

be expressed as

ϕeff =

{ ∫ t

t0
Vap · dt (α′ < 1)

h2(RH +RL)/(2μvRL) (α′ ≥ 1).
(15)

Impact of process variations.

The complexity of Eq. (13) and (14) make it infeasible to

derive a simple analytical expression of the variance of α′

even if we assume both h′ and γ′ follow normal distributions.

However, we are still able to construct a polynomial-based

α′ model to approximate the variations of the average doping

front in the memristor device.

By running extensive numerical simulations under various

conditions, we found the actual α′ can be modeled as the

product of the designed value α and a coefficient η that

represents the influence of process variations as:

α′ = η · α. (16)

Here η can be expressed by a heuristic formula (partially from

the first order Taylor expansion of Eq. (13) and (14)) as

η = 1
(1+ϕ·ε1+ϕ·ε2·(w1·E+w2·G))·(1+σγ ·D) . (17)

Similar to the definitions we used in Section III-A, D and

E are two independent random numbers that represent the

impact of the RDD and the geometry variations, respectively.

To avoid overestimating the impact of geometry variations on

α′, a new random number G ∼ N (0, 1) is introduced to offset

the impact of LER. ε1 and ε2 are two scalars extracted from

the actual simulations. The coefficients w1 and w2 represent

the weights of E and G, where w2
1 + w2

2 = 1.
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C. Distribution of M′

By modeling R′
L, R′

H and α′ with Eq. (11) (12) (16), the

total memristance M ′ of a TiO2 memristor can be simply

calculated by Eq. (2), where the design values of RH /RL and

α should be replaced by the actual values R′
H , R′

L and α′.
Table II summarizes the main steps and equations included in

our proposed statistical model of TiO2 memristors.

IV. MODEL GENERATION FLOW

In this section, we describe the methodology to extract the

parameters included in our proposed statistical model of TiO2

memristors. Some critical implementation considerations are

also discussed.

A. Parameter Extraction

Based on the discussion in Section III, we proposed a four-

step extraction methodology to obtain the parameters required

by our proposed statistical model.

Step 1: Model input characterization.
In the electrical testing of a memristor device, only three pa-

rameters can be measured directly: R′
H , R′

L and I(t)(orV (t).
The measurement of I(t), which is a time-varying variable,

requires two doping front α movements following 0 → 1 and

1 → 0 directions under certain electrical excitations: as we

discussed in Section III-B, the electrical excitations must be

carefully controlled to prevent the doping front from hitting

the boundaries. The absolute value of the flux ϕ can be simply

calculated as the integral of the applied voltage over time.

Step 2: Distribution generations for R′
H and R′

L.
The PDF of R′

L can be modeled as a normal distribution

as shown in Eq. (11). The mean μRL
and the variance σRL

can be easily extracted from the statistical data measured

(or simulated if Monte-Carlo simulation is used) in Step 1.

Though R′
H does not strictly follow a normal distribution in

Eq. (12), a mean of μRH
can still be extracted. Since being

exposed to the same geometry variations, σRH
≈ σRL

in Eq.

(12). As we shall show in Section V-A, modeling R′
H as a

normal distribution approximation introduces very marginal

discrepancies from the statistical data and incurs very little

impact on the accuracy of α modeling. Finally, the variance

of σγ needs to be provided by material-level characterizations.

Step 3: Distribution generation for α′.
For every memristor sample, the total memristance and their

average doping front position at a given time stamp tj can be

calculated as:

M ′(tj) =
V (tj)
I(tj)

, α′(tj) =
R′

H−M ′(tj)
R′

H
−R′

L
. (18)

Monte-Carlo simulations can derive the distribution of

M ′(tj) and α′(tj) and the mean μα and the variance σα of

α′(tj). Then two scalars – ε1 and ε2 can be extracted by Eq.

(16) and (17) with estimation method.

We proposed a heuristic method to generate w1 and w2:

We start with an assumption that w1 = 1 and w2 = 0.

The derived mean μM and variance σM of total memristance

M are then compared to the corresponding parameters of

the measured data M ′, say, μ̂M and σ̂M . If the impact of

geometry variations is overestimated, we will have σ̂M > σM

and μ̂M 	= μM . We then adjust the values of w1 and w2 to

reduce the mismatch. The optimal approximations of w1 and

w2 can be obtained when the parameter mismatch is below an

acceptable threshold.

Step 4: Model verification and improvement.
The above parameters only take a few minutes to be

extracted when sufficient data provided and sophisticated

estimation method applied. After all necessary parameters are

extracted, the statistical models can be constructed. The static

and dynamic behaviors of TiO2 memristors under various

electrical excitations can be simulated by our model without

conducting the time-consuming Monte-Carlo simulations. The

accuracy of our proposed model can still be verified by com-

paring to the Monte-Carlo simulation results. The accuracy

of our proposed model could be improved by optimizing the

iteration termination conditions of the parameter extraction

processes.

B. Flow Summary

The pseudocode of the simulation flow of the memristor

dynamic behavior is summarized below:

Algorithm 1: Statistical Model for Computer Simulation

E = N (0, 1), G = N (0, 1), D = N (0, 1)
generated at the beginning of simulation;

1: ϕ(n + 1) = ϕ(n) + V (n + 1) · dt
2: if abs(ϕ(n + 1)) > ϕeff

3: ϕ(n + 1) = sign(ϕ(n + 1)) · ϕeff

4: end if
5: η(n + 1) = 1

(1+ϕ(n+1)·ε1+ϕ(n+1)·ε2·(w1·E+w2·G))·(1+σγ ·D)

6: vel(n + 1) = μv · RL
h2 · V (n+1)

M(n)

7: α(n + 1) = a(n) + vel(n + 1) · dt
8: α′(n + 1) = η(n + 1) · α(n + 1)
9: Check boundary condition of α′(n + 1)

10: If α′(n + 1) reaches boundary
11: ϕ(n + 1) = 0
12: end if
13: M ′(n + 1) = R′

L · α′(n + 1) + R′
H · (1 − α′(n + 1))

14: return M

V. MODEL VERIFICATION AND DESIGN IMPLICATION

A. Model Verification

Because of the lack of published data on memristor device

variations, we use Monte-Carlo simulation results as our

baseline to validate the proposed statistical model. Three basic

memristor testing data – R′
H , R′

L and I(t), are generated from

the simulations on the 3D device structure examples generated

TABLE III
STATISTICAL MODEL PARAMETERS

Variation Parameters Coefficients

μRH
0.994 ε1 -0.028

μRL
0.994 ε2 0.072

σRH
2.16% w1 0.98

σRL
2.16% w2 0.2

σγ 2%

TABLE IV
VARIANCE BETWEEN 3D MODEL AND STATISTICAL MODEL.

a − t M − t V − I
+3σ 4.97% 2.03% 2.20%
−3σ 5.05% 2.12% 1.99%

349
5



0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

Po
si

ti
on

 a

t (s)

3D, +3sigma 3D, -3sigma Stat, +3sigma Stat, -3sigma Theoratical 
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by the technique in [12]. However, there is nothing preventing

us from using the measurement data the input of our model

generation. The parameters of the generated statistical model

are summarized in TABLE III, which are used in our following

simulations.

In this section, the effectiveness of our proposed statistical

model is validated by comparing our simulation results of

the different electrical properties of a TiO2 memristor with

that from the Monte-Carlo simulations based on 3D device

structure samples. Every Monte-Carlo simulation run include

10,000 samples.

Test 1: Fixed Input Signal. A sinusoid input signal V =
Vap · sin (2πf · t) with Vap = 1V and f = 0.5Hz is

applied to the simulated memristor device. Fig. 5, 6, and

7 show the simulation results of α′(t), M ′(t), and I − V
characteristics, respectively. The results of our statistical model

(labeled “stat”) are very close to the results of the Monte-

Carlo simulations with 3D device samples (labeled “3D”).

For example, compared to 3D Monte-Carlo simulations, our

memristance results shows only ∼ 2% discrepancy over the

simulated time range at the ±3σ corners. Table IV summarizes

the variances of each electrical property at each corner.
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Fig. 9. ±3σ variances of M vs. Vap at t = 1s.

Test 2: Frequency Dependency. The same sinusoid input signal

is applied with Vap = 2V while f changes from 2Hz
to 10Hz. Again, our statistical model demonstrates a good

approximation over the whole range, as shown in Fig. 8.

Test 3: Impact of Flux. In this test, we keep the input as a

sinusoid signal with a fixed f = 0.5Hz. We vary Vap from

0.1V to 1.2V and measure α and M at t = 1s. For an ideal

device without any process variations, α reaches to 1 when

Vap = 1.26V , which is the upper bound of our simulation. The

corresponding α and M at different Vap’s are shown in Fig. 3

and Fig. 9, respectively. Results show that our statistical model

fits the Monte-Carlo simulation results very well except when

Vap is ∼ 1.1V . The reason has been explained in Section III-B.

In memristor-based analog circuit design, we recommend not

to operate the memristors in this region where the doping

fronts in some memristors may hit the device boundary under

the process variations.

Runtime Comparison. The proposed statistical model of TiO2

memristors significantly improves runtime cost: 10,000 device-

based Monte-Carlo simulations [12] took ∼ 2 hours in a

MATLAB environment, while the same number of simulations

only took ∼ 2 seconds by using our proposed statistical model.

B. Applications

The statistical TiO2 memristor model can be used to analyze

the impact of process variations on memristor-based circuit

designs. In this section, we use an op-amp based variable gain

amplifier (VGA) [13][14] as the example to demonstrate the

effectiveness of our model.

1) An op-amp based VGA with one memristor: Fig. 10

shows a simple VGA design which includes an op-amp, a

resistor and a memristor [13]. VBIAS is the signal to control

the memristor programming. The VGA gain (G), which is the

ratio between the output signal VOUT and the input signal

VIN , is mainly determined by the memristance RM and the
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RF

VOUT
VBIAS

VIN

RM

Fig. 10. VGA topology with a TiO2 memristor.

Fig. 11. Series of 100 Monte-Carlo simulations of the gains of the op-amp
based VGA with one memristor.

resistance RF as:

G = −VOUT

VIN
= RM

RF
. (19)

In our simulation, we set the resistor RF = 1KΩ. The

memristance (RM ) of an ideal memristor device sweeps from

RL = 100Ω to RH = 16KΩ. The initial state of the memristor

is RL, at which the domain wall is at the position of α = 1. A

low-frequency sinusoidal signal VBIAS = 0.2V ·sin(2π ·0.5·t)
is applied to control the memristance of the memristor. VBIAS

was carefully selected in order to drive the doping front

α over the full range [0, 1] and demonstrate the impact

of boundary conditions.A high-frequency sinusoidal signal

VIN = 0.1V · sin(2π · 1K · t) is applied to measure G. 100

Monte-Carlo simulations are run based on our statistical TiO2

memristor model.

Fig. 11 shows the VGA gains from the Monte-Carlo sim-

ulations. During the first half period t = 0s ∼ 1s, VBIAS is

positive. G grows as RM increases until the domain wall hits

the boundary (α = 0). In contract, a negative VBIAS results

in the decreases of RM and G. As expected, the variation of

G agrees with the distribution of memristance. For example,

the ±3σ of G at t = 1s is ∼ ±7%, which is consistent with

±3σ variance of the R′
L distribution shown in Fig. 2.

An interesting phenomenon observed in Fig. 11 is: during

the two periods that the memristance increases and decreases,

the variation of G shows the different trends. For instance,

the VGA has the same μG at t = 0.6s and t = 1.25s.

However, σG(t=1.25s) is much less than σG(t=0.6s). The ex-

planation is the follows: when programming memristor, the

memristance changing rate of the memristors with high total

memristance is faster than the one of the memristors with low

total memristance. Such mechanism spreads the distribution of

instantaneous memristance M when programming M to high

and suppresses M distribution when programming M to low.

2) An op-amp based VGA with two memristors: We can

replace the resistor RF in Fig. 10 with another memristor to

achieve more programming capability in VGA designs. If we

VOUT
VBIAS

VIN

RM1

RM2

IM

Fig. 12. VGA topology with two identical TiO2 memristors.

Fig. 13. Series of 100 Monte-Carlo simulations of the gains of the op-amp
based VGA with two memristors.

connect the two memristors in the same direction, say, the

TiO2 portion of one memristor is connected to the TiO2−x

portion of the other one, the changes of their memristances

will follow the same trend. Ideally, the gain of the VGA (G)

will keeps constant since the ratio of the two memristances

doesn’t change. To obtain a wide programmable gain range

of the VGA, two memristors are connected back to back as

shown in Fig. 12.

We conducted Monte-Carlo simulations with the statistical

TiO2 memristor model by assuming RM1 and RM2 have

the same design parameters. In the simulation, we use the

same input signal VIN as the previous design, and change

the amplitude of the control signal VBIAS to 1V in order to

excise two memristors. The G changes over time when RM1

and RM2 are fully uncorrelated is demonstrated in Fig. 13. The

input signal VIN , the control signal VBIAS , the current through

the memristors IM , and the output signal VOUT are shown in

Fig. 14. Compared to the VGA with one memristor, the range

of the programmable gain G of the VGA with two memristors

is significantly increased. following with the increase in G
variation: +3σG(t=2s) = 22.4% and −3σG(t=2s) = 15.5%.

Considering that the two memristors are made by the same

process at the same time, there must be some correlations

between RM1 and RM2. Fig. 15 shows ±3σG by adjusting the

correlation coefficient of the two memristors from 0 to 1. As

Fig. 14. Series of 100 Monte-Carlo simulations of the corresponding signals
of the op-amp based VGA with two memristors.
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Fig. 16. Model with error coefficient B.

expected, the simulation results show that a larger correlation

results in a smaller G variation. When the two memristors are

fully correlated (means they are identical), we still observe ∼
±2.8% variation. This small variations come from the intrinsic

total memristance variations of the two memristors and cannot

be canceled to each other at circuit design level.

C. Model error tolerance analysis

Our previous analysis was build on the polynomial repre-

sentation or Gaussian distribution assumption on the physical

parameters of TiO2 memristors. However, ignoring higher

order approximation in our model may incur inaccuracy when

the variation is large. As an example, ionic drift in a TiO2

memristor has an exponential relationship with the applied

electrical field [15]. Our previous linear approximation may

not accurately describe the doping front movement when the

applied voltage is large.

Based on Taylor expansion, a higher order relationship (e.g.,

the second order term) can be added on top of Eq. (3). The

modified velocity of doping front movement v(t) becomes

v(t) = dα
dt = μv · RL

h2 · V (t)
M(α) +B · .( V (t)

M(α) )
2. (20)

Here the coefficient B stands for the second order impact

of the voltage/current on doping front movement, which is

independent to other process variations. The normal value of

B is between [−0.1, 0.1] [15]. We take the exponential model

of doping front movement in 3D Monte-Carlo simulation

and replace the velocity express Eq. (3) with Eq. (20) in

our statistical model, The comparison between the simulation

results of both approaches for the variance of M is shown in

Fig. 16.

As we can see from the simulation results, our statistical

model companies well with the 3D device model when B is

less than 0.04. When B is larger than 0.04, the results start to

diverge due to the increased weight of the higher order term.

Higher order approximation will help alleviate this issue at the

cost of model complexity and run time increase.

VI. CONCLUSION

In this work, we developed a statistical model for TiO2

thin-film memristors based on the theoretical understanding of

the impact of process variations. The corresponding parameter

extraction strategy and implementation considerations are also

discussed. Simulation results show that our proposed statis-

tical model has excellent accuracy and significantly reduced

runtime cost: 3 ∼ 4 magnitudes run time reduction and only

∼ 2% accuracy degradation are achieved compared to the

existing device-based Monte-Carlo simulations. An application

of memristor based op-amp VGA is also explored with our

model.
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